WALL ELEVATIONS

Bailey Wind Bearing Walls (BWB) Lightweight Steel Framing (LSF) provides economical structural support for finishes under lateral wind loads on buildings where other structural components carry axial loads. BWB walls can be designed for a variety of deflection limits for finishes such as EIFS, Stucco, Metal Panel and Brick Veneer. Wind-Bearing LSF may be used in buildings of any height.

Bailey Axial Loadbearing Walls (BAB) Lightweight Steel Framing (LSF) supports the combined axial and wind loads on interior and exterior walls. Buildings up to six stories in height can be framed using LSF. LSF works with a variety of floors including LSF Joists, ComSlab® composite flooring systems, OWSJ’s and hollow precast concrete.
Bailey Joists for Floors & Roofs
Lightweight Steel Framing (LSF) Joists offer a wide range of span and load capabilities for commercial and residential floor systems and mezzanines. LSF ceiling Joist members can also be utilized for pitched, mansard and flat roofs. The use of Bailey LSF Joist members will provide support for interior drywall ceilings where long clear spans are required.

Bailey Non-Loadbearing Walls (BNLB) Lightweight Steel Framing (LSF) provides an effective solution for interior non-load bearing walls and partitions. When combined with top track deflection members, bulkheads will resist buckling caused by deflection of floor and roof assemblies. Non-load bearing LSF provides a stable framework for drywall or other finished wall surface applications.

Bailey Spandrel Walls Lightweight Steel Framing (LSF) accommodates a variety of spans for continuous strip window applications. LSF provides a stable, square platform in which glazing units and frames can be effectively installed.
Axial loadbearing construction, some form of bracing is required to resist wind, seismic and sway effects produced by vertical loads acting on the structure (the P-delta effect). Diagonal tension straps are normally the most economical means of providing this bracing. Diagonal straps are typically installed in pairs to form the X pattern over the face of the studs. Strap end connections must be engineered to transfer the full design load and account for horizontal and vertical strap reactions.
GENERAL DETAILS

1. BAILEY STUD TO BAILEY TRACK

2. BAILEY STUD TO BAILEY PATENTED PUNCHED TRACK

3. BAILEY STUD REINFORCED WITH BAILEY TRACK

4. BAILEY STUD WITH WEB STIFFENER REINFORCING

5. JAMB STUD AT DOOR OPENING

6. BAILEY STUD TO BAILEY TRACK AT CORNERS

7. THROUGH-THE-STUD BRIDGING

8. FLAT STRAP BRIDGING

9. NOTCHED CHANNEL BRIDGING

10. EXTERIOR SHEATHING

11. EXTERIOR RIGID INSULATION

12. EXTERIOR SHEATHING AND RIGID INSULATION
AXIAL LOADBEARING WALLS

35 DIAGONAL TENSION STRAPS ONE SIDE

36 DIAGONAL TENSION STRAPS BOTH SIDES

37 TENSION STRAP CONNECTION

38 TENSION STRAP CONNECTION WITH GUSSET PLATES
AXIAL LOADBEARING WALLS

39 WALL OPENING WITH UPPER LINTEL

Wall Opening with Upper Lintel Diagram

Additional Bailey Studs as Specified

40 WALL OPENING WITH LOWER LINTEL

Wall Opening with Lower Lintel Diagram

Additional Bailey Studs as Specified

41 OPEN WEB STEEL JOISTS IN LINE WITH AXIAL LOADBEARING STEEL STUDS

Open Web Steel Joists in Line with Axial Loadbearing Steel Studs Diagram

Additional Bailey Studs as Specified

20 OPEN WEB STEEL JOISTS OFFSET TO AXIAL LOADBEARING STEEL STUDS

Open Web Steel Joists Offset to Axial Loadbearing Steel Studs Diagram

Additional Bailey Studs as Specified
LIGHTWEIGHT STEEL FRAMING DETAILS
GENERAL & AXIAL LOADBEARING

sales@bmp-group.com • www.bmp-group.com