BAILEY PONY WALL
PARTIAL WALL FRAMING CONNECTION TO FLOOR

The Bailey Pony Wall is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track. This high-performance, reliable, and durable solution for knee wall-to-foundation connections transfers loads through the stud member onto the welded 1/2” base plate which is then anchored to the floor system.

PRODUCT DIMENSIONS
PW24 = 23-3/4” tall with 3-3/8” wide x 8” long plate
PW36 = 35-3/4” tall with 3-3/8” wide x 8” long plate
PW48 = 47-3/4” tall with 3-3/8” wide x 8” long plate

MATERIAL SPECIFICATIONS
Plate Material: CSA: G40.21 44W/300W 1/2” thick hot rolled steel
Stud Material: Structural Grade 50 (362S250-97), 50ksi (340 MPa) 12ga (97mil), 0.1017” Design thickness, 0.0966” Min. thickness
Packaging: Individually
ASTM: A36, A653/A653M, A1003

INSTALLATION
Install the Pony Wall inside the track or directly to the floor structure. Anchor to the floor as designed by EOR. Attach the studs to both flanges of the Pony Wall. A minimum of 3-1/2” stud member can be used.

* Bailey Pony Wall are distributed by Bailey Metal Products in Canada under permission granted by Clark Dietrich Building Systems.
BAILEY PONY WALL

GENERAL:
Pony Wall Member - 362S250-97
Material Thickness: 97 mil (0.1017 in.) design thickness
Material Strength: Structural Grade 50, 50 ksi minimum yield stress
ASTM: A653/A653M, A1003/A1003M

Pony Wall Base Plate
Material Thickness: 1/2” minimum thickness
Material Strength: Structural Grade 44, 44 ksi minimum yield stress
CSA: G40.21 44W/300W

Design Standard - CSA S136-2016 (LSD)
North American specification for the design of cold-formed steel structural members.

<table>
<thead>
<tr>
<th>BAILEY Pony Wall Maximum Specified Moment and Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>BAILEY Pony Wall</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. BAILEY Pony Wall is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.
2. Out-of-plane loads are transferred to the floor system through the base-plate, which is welded to the BAILEY Pony Wall member.
3. BAILEY Pony Wall may be used in place of standard framing members, or in conjunction with them to frame the wall.
4. Base connection between the BAILEY Pony Wall and support structure is designed by others.
5. For serviceability/deflection calculations of the BAILEY Pony Wall, an effective moment of inertia = 0.774 in4 was used.
6. Maximum specified point load @ cantilever end and maximum specified uniformly distributed load were both calculated using the maximum specified moment.
7. It is the responsibility of the designer to properly detail the connections on the contract drawings.

<table>
<thead>
<tr>
<th>BAILEY Pony Wall Maximum Specified Moment w/Anchors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>BAILEY Pony Wall</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. BAILEY Pony Wall is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.
2. Out-of-plane loads are transferred to the floor system through the base-plate, which is welded to the BAILEY Pony Wall member.
3. BAILEY Pony Wall may be used in place of standard framing members, or in conjunction with them to frame the wall.
4. For serviceability/deflection calculations of the BAILEY Pony Wall, an effective moment of inertia = 0.774 in4 was used.
5. Maximum specified moments w/anchors are based on using 1/2” φ Hilti Kwik Bolt-3 anchors to concrete.
6. Other anchors may be used to achieve the full Pony Wall resistance, but must be designed separately.
7. Listed values have not been increased for wind, seismic, or other factors.
8. Hilti is a registered trademark of Hilti Aktiengesellschaft Corporation.
9. It is the designer’s responsibility to check for minimum concrete edge distance and minimum concrete thickness when using anchors.
10. It is the responsibility of the designer to properly detail connections on the contract drawings.
11. See Figure-1 for base-plate anchor details.
Notes:
1. BAILEY Pony Wall is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.
2. Out-of-plane loads are transferred to the floor system through base-plate, which is welded to the BAILEY Pony Wall member.
3. BAILEY Pony Wall may be used in place of standard framing members, or in conjunction with them to frame the wall.
4. For serviceability/deflection calculations of the BAILEY Pony Wall, an effective moment of inertia = 0.774 in\(^4\) was used.
5. Maximum specified moments w/anchors are based on using 1/2” φ Hilti Kwik Bolt-3 anchors to concrete.
6. Other anchors may be used to achieve the full Pony Wall resistance, but must be designed separately.
7. Listed values have not been increased for wind, seismic, or other factors.
8. Hilti is a registered trademark of Hilti Aktiengesellschaft Corporation.
9. It is the designer’s responsibility to check for minimum concrete edge distance and minimum concrete thickness when using anchors.
10. It is the responsibility of the designer to properly detail connections on the contract drawings.
11. See Figure-1 for base-plate anchor details.

BAILEY Pony Wall Maximum Specified Point Loads

<table>
<thead>
<tr>
<th>Member</th>
<th>Length, in. (FT)</th>
<th>P<sub>max</sub></th>
<th>M<sub>max</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>PW24 24 (2)</td>
<td>165</td>
<td>3,964</td>
<td>11,891</td>
</tr>
<tr>
<td>PW36 36 (2)</td>
<td>73</td>
<td>2,642</td>
<td>7,927</td>
</tr>
<tr>
<td>PW48 48 (2)</td>
<td>41</td>
<td>1,982</td>
<td>5,945</td>
</tr>
</tbody>
</table>

BAILEY Pony Wall Maximum Specified Point Loads w/Anchors

<table>
<thead>
<tr>
<th>Pony Wall Member</th>
<th>Length, in. (FT)</th>
<th>Anchors to Anchor</th>
<th>No. of Anchors</th>
<th>Uniformly Distributed Load (lbs/ft)</th>
<th>Maximum Moment (lbs-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW24 24 (2)</td>
<td>165</td>
<td>3,964</td>
<td>PW24 24 (2)</td>
<td>1/2” φ Hilti Kwik Bolt-3 (3-1/2” Nominal Embedment, 3 ksi Uncracked Concrete)</td>
<td>2,642</td>
</tr>
<tr>
<td>PW36 36 (2)</td>
<td>73</td>
<td>2,642</td>
<td>PW36 36 (2)</td>
<td>165</td>
<td>3,964</td>
</tr>
<tr>
<td>PW48 48 (2)</td>
<td>41</td>
<td>1,982</td>
<td>PW48 48 (2)</td>
<td>41</td>
<td>1,982</td>
</tr>
</tbody>
</table>

Notes:
1. BAILEY Pony Wall is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.
2. Out-of-plane loads are transferred to the floor system through base-plate, which is welded to the BAILEY Pony Wall member.
3. BAILEY Pony Wall may be used in place of standard framing members, or in conjunction with them to frame the wall.
4. For serviceability/deflection calculations of the BAILEY Pony Wall, an effective moment of inertia = 0.774 in\(^4\) was used.
5. Maximum specified moments w/anchors are based on using 1/2” φ Hilti Kwik Bolt-3 anchors to concrete.
6. Other anchors may be used to achieve the full Pony Wall resistance, but must be designed separately.
7. Listed values have not been increased for wind, seismic, or other factors.
8. Hilti is a registered trademark of Hilti Aktiengesellschaft Corporation.
9. It is the designer’s responsibility to check for minimum concrete edge distance and minimum concrete thickness when using anchors.
10. It is the responsibility of the designer to properly detail connections on the contract drawings.
11. See Figure-1 for base-plate anchor details.
Notes:

1. **BAILEY Pony Wall** is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.

2. Out-of-plane loads are transferred to the floor system through the base-plate, which is welded to the **BAILEY Pony Wall** member.

3. **BAILEY Pony Wall** may be used in place of standard framing members, or in conjunction with them to frame the wall.

4. For serviceability/deflection calculations of the **BAILEY Pony Wall**, an effective moment of inertia \(I_{eff} = 0.774 \text{ in}^4 \) was used.

5. Maximum specified moments w/anchors are based on using 1/2" \(\phi \) Hilti Kwik Bolt-3 anchors to concrete.

6. Other anchors may be used to achieve the full Pony Wall resistance, but must be designed separately.

7. Listed values have not been increased for wind, seismic, or other factors.

8. Hilti is a registered trademark of Hilti Aktiengesellschaft Corporation.

9. It is the designer’s responsibility to check for minimum concrete edge distance and minimum concrete thickness when using anchors.

10. It is the responsibility of the designer to properly detail the connections on the contract drawings.

11. See Figure 1 for base-plate anchor details.

<table>
<thead>
<tr>
<th>BAILEY Pony Wall Maximum Specified UDL Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>BAILEY Pony Wall</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. **BAILEY Pony Wall** is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.

2. Out-of-plane loads are transferred to the floor system through the base-plate, which is welded to the **BAILEY Pony Wall** member.

3. **BAILEY Pony Wall** may be used in place of standard framing members, or in conjunction with them to frame the wall.

4. For serviceability/deflection calculations of the **BAILEY Pony Wall** and support structure is designed by others.

5. For serviceability/deflection calculations of the **BAILEY Pony Wall**, an effective moment of inertia \(I_{eff} = 0.774 \text{ in}^4 \) was used.

6. When both point and uniform loads are applied, the combined loads shall be limited to the maximum specified moment.

7. It is the responsibility of the designer to properly detail the connections on the contract drawings.

<table>
<thead>
<tr>
<th>BAILEY Pony Wall Maximum Specified UDL Loads w/Anchors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pony Wall Member</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>PW24</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PW36</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PW48</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. **BAILEY Pony Wall** is intended to support out-of-plane loading of cantilevered partial wall systems that are unsupported at the top track.

2. Out-of-plane loads are transferred to the floor system through the base-plate, which is welded to the **BAILEY Pony Wall** member.

3. **BAILEY Pony Wall** may be used in place of standard framing members, or in conjunction with them to frame the wall.

4. For serviceability/deflection calculations of the **BAILEY Pony Wall**, an effective moment of inertia \(I_{eff} = 0.774 \text{ in}^4 \) was used.

5. Maximum specified moments w/anchors are based on using 1/2" \(\phi \) Hilti Kwik Bolt-3 anchors to concrete.

6. Other anchors may be used to achieve the full Pony Wall resistance, but must be designed separately.

7. Listed values have not been increased for wind, seismic, or other factors.

8. Hilti is a registered trademark of Hilti Aktiengesellschaft Corporation.

9. It is the designer’s responsibility to check for minimum concrete edge distance and minimum concrete thickness when using anchors.

10. It is the responsibility of the designer to properly detail the connections on the contract drawings.

11. See Figure 1 for base-plate anchor details.