

BAILEY HORIZONTAL FLANGE ATTACHMENT CLIP (HFA CLIP)


BAILEY HFA CLIP is a low cost method to accommodate the vertical deflection in exterior by-pass curtain wall conditions.

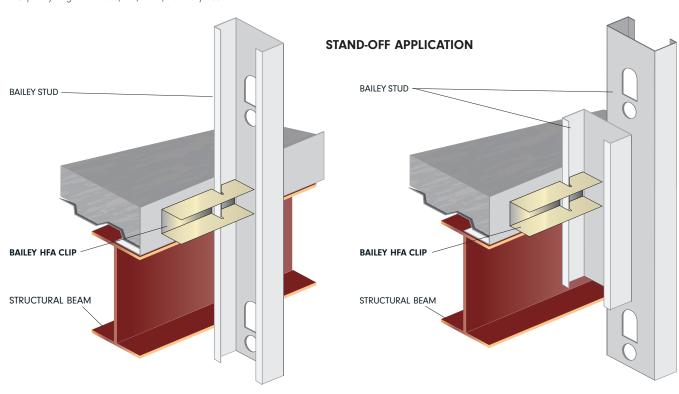
- Allows for vertical movement of the structure independent from the exterior curtain wall framing
- Eliminates the need for mechanical fastening between the clip and the steel stud
- If the design requires a stand off distance, an additional steel stud should be used to eliminate the stand-off and establish the connection

BAILEY HFA CLIP PROPERTIES												
Product Identification	Base Steel Thickness			Size		Weight*	Mass*	Yield		Packaging		
	Mils	Design		in.	mm	lb	kg	Strength**	Coating***	Pcs/Ctn		
		in.	mm			1.5	"9					
Bailey HFA Clip	68	0.0713	1.81	2×5	50.8×127	0.526	0.238	50	G90	50		

^{*} Weight is based on design steel thickness of net section. ** Meets ASTM A1003: Specification for Steel Sheet, Carbon, Metallic and Nonmetallic-Coated for Cold-Formed Framing Members. *** Meets ASTM A653: Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process.

BAILEY HORIZONTAL FLANGE ATTACHMENT CLIP (HFA CLIP)

INSTALLATION


Connect the Bailey HFA Clip to the steel stud flange, then attach to the building structure adequately using suitable screws, PAF or welds as per the engineer of record, designs and shop drawings. If a stand-off situation exists between the studs and the structure, use an additional stud to bridge the distance.

LOAD CAPACITIES

	Stud Identification	Stud Stee	Properties	Service Limit Load	Ultimate Load	LSD Factored Load Resistance	
		Mils	Yield Strength (ksi)	lb	lb	lb	
HFA CLIP	362 \$ 162 - 33	33	33	409	964	459	
	362 S 162 - 43	43	33	524	1272	606	
	362 S 162 - 54	54	50	734	1362	649	
	362 S 162 - 68	68	50	828	1448	689	
	600 S 162 - 33	33	33	378	1274	607	
	600 S 162 - 43	43	33	542	1343	639	
	600 S 162 - 54	54	50	746	1410	671	
	600 S 162 - 68	68	50	851	1450	690	

TABLE NOTES

- ullet Clip capacity loads were obtained from tests performed under the supervision of Dr. R. M. Schuster, P. Eng.
- •Above loads are based on using #12 screws and following the installation instructions
- •The service limit load was recorded at 1/8" deflection according to the Research Note published by LGSEA on CFS "Testing and Establishing Design Values for Clips" by Roger LaBoube, P.E., Ph.D., February 2002
- •Ultimate loads are based the maximum clip resistance
- $^{\circ}\text{LSD}$ factored load resistances were derived according to section F1.1 of CSA \$136-07
- •Anchoring the Bailey HFA Clip to the structure is the responsibility of the engineer of record

